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Abstract In this paper, complete analysis is presented to study Bautin bifurcation for
the Lengyel–Epstein System

{ du
dt = a − u − 4uv

1+u2 ,

dv
dt = σb

(
u − uv

1+u2

)
.

Sufficient conditions for a and b are given for the system to demonstrate Bautin
bifurcation. By using b and α = a/5 as bifurcation parameters and computing the
first and second Lyapunov coefficients and performing nonlinear transformation, the
normal form with unfolding parameters is derived to obtain the bifurcation diagrams
such as Hopf and double limit cycle bifurcations. An example is given to confirm that
the system has two limit cycles.
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1 Introduction

The Lengyel–Epstein System is the following reaction-diffusion equations

{
∂u
∂t = �u + a − u − 4uv

1+u2 ,

∂v
∂t = σ

[
�v + b

(
u − uv

1+u2

)]
,

(1.1)

which was derived from the chlorite iodide malonic acid (CIMA) chemical reaction
introduced by Lengyel and Epstein [5,6] and can be used to design chemical sys-
tems capable of displaying stationary, symmetry breaking reaction diffusion patterns
(Turing structures). Here u and v are the concentrations of the active iodide I− and
inhibitor (ClO−

2 ) at time t , respectively, a and b are positive parameters related to the
feed concentrations; σ > 0 is a rescaling parameter depending on the concentration
of the starch.

A closely related system for this chemical reaction mechanism is the chlorine
dioxide-iodine-malonic acid (CDIMA) reaction shown below.

⎧⎪⎪⎨
⎪⎪⎩

MA+I2 → IMA + I + H+
ClO2 + I− → ClO2 + 1

2 I2

ClO−
2 + 4I− + 4H+ → Cl + 2I2 + 2H2O

S + I2 + I− → SI−3

The first reaction serves as a source of the activator I−, the second produces the inhibitor
chlorite ion, the third shows regeneration of iodine, and the last reaction shows the
complex formation between the activator iodide (I−) and the indicator starch.

In the CDIMA system of reaction, the concentration of Malonic acid (MA), Chloride
Dioxide (ClO2) and Iodine (I2) displays very little variation and essentially they can be
considered constant. Since only the activator iodine ion (I−) and the inhibitor chlorite
ion (ClO−

2 ) show wide concentration variation, the system can be approximated by
two variables model [2,3,7,8].

In the presence of starch which is used as indictor, the diffusion rate of the activator
(I−) is slower than that of the inhibitor (ClO−

2 ). The starch which is much bigger
molecule forms a chemical complex with I− effectively reducing the diffusion rate
of I−. This allows the inhibitor to diffuse faster creating a condition that leads to
oscillatory phenomenon. In laboratory conditions, a sample of parameters is taken in
the range 0 < a < 35, 0 < b < 8, σ = 8.

In Ni and Tang [10], studied the initial value problem of the corresponding reaction-
diffusion model with the no-flux boundary condition. Yi et al. [12] used b as the bifur-
cation parameter and obtained a critical value b∗ of b such that both the ODE and PDE
models exhibit a Hopf bifurcation as b crosses b∗. They calculated the first Liapunov
coefficient which determines the stability and and direction of the periodic solution
bifurcating from the equilibrium point for the ODE. From the view point of Chemistry
and Physics, periodic solutions represent the oscilations of the concentrations of I−
and ClO−

2 . However the first Liapunov coefficient can be zero for certain value of
α = a

5 . In this situation, the criteria of the stability of the bifurcating periodic solution
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and the direction of Hopf bifurcation fails. This makes us to consider Bautin bifur-
cation and calculate the second Liapunov coefficient which leads to the bifurcation
of the second limit cycle. Bautin bifurcation is a so-called 2-dimensional bifurcation
of two parametric autonomous ODE systems and has very important applications in
many dynamical systems in real-world applications.

The rest of the paper is organized as follows. In Sect. 2, we use the method from
Kuznetsov [4] to calculate the first and second Lyapunov coefficients and hence obtain
the normal form of Lengyel–Epstein System with the unfolding parameters. In Sect.
3, we give one example to verify our theoretical result and end our investigation with
concluding remarks.

2 Bautin bifurcation of the ODE model

Let α = a/5. Then (u∗, v∗) = (α, 1+α2) is the unique equilibrium point of Sys.(1.1).
Let w1 = u − u∗, w2 = v − v∗. Then in the absence of diffusion, Sys.(1.1) can be
transformed as ⎧⎨

⎩
dw1
dt = 4α − w1 − 4(w1+α)(w2+1+α2)

1+(w1+α)2 ,

dw2
dt = σb

[
w1 + α − (w1+α)(w2+1+α2)

1+(w1+α)2

]
.

(2.1)

or

dw

dt
= J (α, b)w + G(w, α, b). (2.2)

where w = (w1, w2)
T , G(w, α, b) = (g1(w, α, b), g2(w, α, b))T ,

J (α, b) =
(

3α2−5
1+α2 − 4α

1+α2

2σα2b
1+α2 − σαb

1+α2

)
,

g1(w, α, b) = 4α(3 − α2)

(1 + α2)2 w2
1 + 4α(α2 − 1)

(1 + α2)2 w1w2 + 4(α4 − 6α2 + 1)

(1 + α2)3 w3
1

+ 4α(3 − α2)

(1 + α2)3 w2
1w2 − 4α(5 − 10α2 + α4)

(1 + α2)4 w4
1

+ 4(1 − 6α2 + α4)

(1 + α2)4 w3
1w2 + 4(−1 + 15α2 − 15α4 + α6)

(1 + α2)5
w5

1

− 4α(5 − 10α2 + α4)

(1 + α2)5
w4

1w2 + O(|u|6),

g2(w, α, b) = σb

4
g1(w, α, b).

The linear part of Sys.(2.1) at (0, 0) is

dw

dt
= Jw. (2.3)
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Then the characteristic equation of J is

�(λ) ≡ λ2 + T λ + D = 0, (2.4)

where

T = 3α2 − σαb − 5

1 + α2 , D = 5σαb

1 + α2 .

In this paper, we make the following assumptions

(H1) α >
√

15
3 .

(H2) 5
3 < α2 < 27+√

769
4 .

(H3) α2 > 27+√
769

4 .

Then if (H) holds, J has a pair of purely imaginary roots ±ω0i when b = b∗ ≡ 3α2−5
ασ

where

ω0 =
√

5(3α4 − 2α2 − 5)

1 + α2 .

on the half line

l =
{

μ = (b, α) : b = b∗, α >

√
15

3

}
.

Near l, �(λ) = 0 has two complex roots λ = ν + iω and λ̄ = ν − iω where

ν(b, α) = 3α2 − bασb − 5

2(1 + α2)
, ω(b, α) =

√
20bα(1 + α2)σ − (5 − 3α2 + bασ)2

2(1 + α2)
.

Then ν(b∗, α) = 0 and ω0 = ω(b∗, α).
Define μ = (b, α) and w = (w1, w2)

T . Note that Sys.(2.1) can be written as

u = L(μ)u + F(u, μ) (2.5)

where

L(μ) = J (b, α),

F(u, μ)= 1

2
B(u, u)+ 1

3!C(u, u, u)+ 1

4! D(u, u, u, u)+ 1

5! E(u, u, u, u, u)+O(|u|6).

Here

B(x, y) =
2∑

j,k=1

∂2 F(u, μ)

∂u j∂uk

∣∣
u1=u2=0x j yk
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= 4[2α(3 − α2)x1 y1 + (α2 − 1)x1 y2 + (α2 − 1)x2 y1]
(1 + α2)2

(
1

bσ
4

)
,

C(x, y, z) =
2∑

j,k,l=1

∂3 F(u, μ)

∂u j∂uk∂ul

∣∣
u1=u2=0x j yk zl

= 8[3(1−6α2+α4)x1 y1z1+α(3−α2)x1 y2z1+α(3−α2)x1 y1z2]
(1+α2)3

(
1

bσ
4

)
,

D(x, y, z, v) =
2∑

j,k,l,r=1

∂4 F(u, μ)

∂u j∂uk∂ul∂ur

∣∣
u1=u2=0x j yk zlvr

= 24

(1+α2)4 [−4α(5−10α2+α4)x1 y1z1v1+(1−6α2+ α4)x1 y2z1v1

+ (1 − 6α2 + α4)x1 y1z2v1 + (1 − 6α2 + α4)x1 y1z1v2

+ (1 − 6α2 + α4)x2 y1z1v1]
(

1
bσ
4

)
,

E(x, y, z, v, w) =
2∑

j,k,l,r,s=1

∂5 F(u, μ)

∂u j∂uk∂ul∂ur∂us

∣∣
u1=u2=0x j yk zlvrws

= 96

(1+α2)5
[−4α(5−10α2+α4)x1 y1z1v1+(1−6α2+α4)x1 y2z1v1

+ (1 − 6α2 + α4)x1 y1z2v1 + (1 − 6α2 + α4)x1 y1z1v2

+ (1 − 6α2 + α4)x2 y1z1v1]
(

1
bσ
4

)
.

2.1 First Lyapunov coefficient

In this subsection, we compute the first and second Lyapunov coefficients by using
the formulas in [4].

Near b = b∗, define

Q(b) =
(

1,
−5 + 3α2 + bασ − iδ

4bα2σ

)T

,

P(b) =
(

δ + (3α2 + bασ − 5)i

2δ
,−4iα

δ

)

123



J Math Chem (2014) 52:2570–2580 2575

where

δ =
√

20bα(1 + α2)σ − (5 − 3α2 + bασ)2.

It is easy to check that

L Q = λQ, LT P = λ̄P, 〈P, Q〉 = P̄1 Q1 + P̄2 Q2 = 1.

Note that on l, b = b∗, namely σ = 0, ω = ω0. The first Lyapunov coefficient 
1 on
l is given by


1
∣∣
b=b∗ = 1

2ω0
Re c1

∣∣
b=b∗

where

c1 = 〈
P, C(Q, Q, Q̄) + B(Q̄, h20) + 2B(Q, h11)

〉
and h20 and h11 are given by

h20 = (2iωI2 − A)−1 B(Q, Q), h11 = −A−1 B(Q, Q̄).

First, we calculate

h20|b=b∗ = (4(25 + 15α4 + 5i
√

5η + α2η)/(15αη2), (−75 − 25α4 − 15i
√

5η

+α2(60 + 7i
√

5η))/(30α2(1 + α2))T ,

h11|b=b∗ = (0, (5 − α2)/(2α2))T ,

where

η = δ|b=b∗ =
√

3α4 − 2α2 − 5

Than we have


1|b=b∗ = (2α4 − 27α2 − 5)

2
√

5α2(α2 + 1)
√

(3α2 − 5)(α2 + 1)
.

Thus we recover the result from [12] regarding the stability of limit cycle bifurcating
from Hopf bifurcation.

Theorem 2.1 Suppose that α satisfies (H1) and that b is sufficiently close to b∗. Then
Sys.(2.1) exhibits a Hopf bifurcation as b crosses b∗. Moreover, if the assumption (H2)
holds, the Hopf bifurcation is subcritical and hence the limit cycle bifurcating from the
equilibrium point is stable as as b crosses b∗ from left to right, and if the assumption
(H3) holds the direction of the Hopf bifurcation is supercritical and the bifurcating
periodic solutions are unstable.
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2.2 Second Lyapunov coefficient

If 
1|b=b∗ = 0, we have to consider Bautin bifurcation [4]. Clearly, 
1|b=b∗ = 0 if

and only if α = α∗ ≡
√

27+√
769

4 ≈ 3.6990150461887854. In this case we have

b∗ = 61 + 3
√

769

2σ
√

27 + √
769

≈ 9.745333956652765

σ
,

ω0 =
√

5(
√

769 − 13)

6
≈ 3.5036706047282387.

and the second Lyapunov coefficient 
2 at b = b∗, α = α∗ can be calculated by the
following form

12l2(α
∗)= 1

12ω0
Re

〈
P, E(Q, Q, Q, Q̄, Q̄)+D(Q, Q, Q, h̄20)+3D(Q, Q̄, Q̄, h20)

+ 6D(Q, Q, Q̄, h11)+C(Q̄, Q̄, h30)+3C(Q, Q, h̄21)+6C(Q, Q̄, h21)

+ 3C(Q, h̄20, h20)+6C(Q, h11, h11)+6C(Q̄, h20, h11) + 2B(Q̄, h31)

+ 3B(Q, h22) + B(h̄20, h30) + 3B(h̄21, h20) + 6B(h11, h21)
〉

where

h20 = (2iω0 − A)−1 B(Q, Q),

h11 = −A−1 B(Q, Q),

h21 = (iω0 − A)I N V [C(Q, Q, Q̄) + B(Q̄, h20) + 2B(Q, h11) − 2c1 Q],
h31 = (2iω0 − A)−1[D(Q, Q, Q, Q̄) + 3C(Q, Q, h11) + 3C(Q, Q̄, h20)

+ 3B(h20, h11) + B(Q̄, h30) + 3B(Q, h21) − 6c1h20],
h22 = −A−1[D(Q, Q, Q̄, Q̄) + 4C(Q, Q̄, h11) + C(Q̄, Q̄, h20) + C(Q, Q, h̄20)

+ 2B(h11, h11) + 2B(Q, h̄20) + 2B(Q̄, h21) + B(h̄20, h20) − 4h11(c1 + c̄1)].

Let μ = (b, α) and μ∗ = (b∗, α∗). We have

h20|μ=μ∗ = (−0.311357 + 0.0608385i,−0.652807 + 0.68949i)T ,

h11|μ=μ∗ = (0.,−0.317288)T ,

h30|μ=μ∗ = (0.227942 − 0.0639309i, 0.48125 − 0.419928i)T ,

c1|μ=μ∗ = 0.0501026i,

h21|μ=μ∗ = (−0.0286001,−0.0696793 − 0.0994375i)T ,

h40|μ=μ∗ = (−0.263493 + 0.0836034i,−0.569289 + 0.432716i)T ,

h31|μ=μ∗ = (−0.0535563 − 0.0276558i,−0.183096 + 0.00250381i)T ,

h22|μ=μ∗ = (0, 0.202437 + 0.0464408i)T .
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Based on the above calculations, we have


2(μ
∗) = −0.00593573 	= 0.

2.3 Regularity

To study the regularity of the map μ = (b, α) → (ν, 
1) near μ∗ = (b∗, α∗), we have
to check if the determinant of the Jacobian Matrix of this map at μ = μ∗ is nonzero,
namely,

det

( ∂ν
∂b

∂ν
∂α

∂
1
∂b

∂
1
∂α

)∣∣∣∣∣
μ=μ∗

	= 0.

To do this, we have to calculate the first Lyapunov coefficient 
1(b, α) given by


1(b, α) = Re[c1]
ω

− σ
Im[c1]

ω2 (2.6)

where

c1 = g21

2
+ |g11|2

λ
+ |g02|2

2(2λ − λ̄)
+ g20g11(2λ + λ̄)

2|λ|2 .

We evaluate g20, g11, g02, g21 first:

g20 = 〈P, B(Q, Q)〉
= [12iα5−17ibα4σ −b(−5i +δ)σ + bα2(20i + δ)σ + α(60i + 12δ − ib2σ 2)

+α3(−56i − 4δ + ib2σ 2)]/[(1 + α2)2δ],
g02 = 〈

P, B(Q̄, Q̄)
〉

= [3iα4 + 5(5i + δ) − α2(20i + δ) − 5ibασ + 9ibα3σ ]/[(α + α3)δ],
g11 = 〈

P, B(Q, Q̄)
〉

= −(5i −3iα2+δ+ibασ)(−5−16α2 + 5α4 + bασ − bα3σ)]/[2α(1 + α2)2δ],
g21 = 〈

P, C(Q, Q, Q̄)
〉

= [−27iα6 − 3(5i + δ) + 25ibα5σ − 2bα3(53i + δ)σ + 3bα(−i + 2δ)σ

+α4(219i + 9δ − 2ib2σ 2) + α2(−281i − 58δ + 6ib2σ 2)]/[(1 + α2)3δ].

Using Mathematica, we have

∂(ν, 
1)

∂(b, α)

∣∣∣∣
μ=μ∗

= det

( ∂ν
∂b

∂ν
∂α

∂
1
∂b

∂
1
∂α

)∣∣∣∣∣
μ=μ∗

= −0.00125023σ 	= 0.

Lemma 2.1 The map (b, α) → (ν, 
1) is regular near b = b∗, α = α∗.
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Fig. 1 Bautin bifurcation diagram

Now we give the normal form of Bautin bifurcation with unfolding parameters and
its bifurcation diagram. Let b = b∗ + τ1, α = α∗ + τ2. Define

β1 = ν(b∗ + τ1, α
∗ + τ2)

ω(b∗ + τ1, α∗ + τ2)
, β2 = √|
2(μ∗)|
1(b

∗ + τ1, α
∗ + τ2).

Then after long calculation, we have

β1 = −0.0359523στ1 + 0.120995τ2 + O(‖τ‖2),

β2 = −0.000188277τ1 + 0.00139831τ2 + O(‖τ‖2).

Then after performing nonlinear transforms, Sys.(2.5) is equivalent to the following
truncated normal form [4]

ż = (β1 + i)z + β2z|z|2 − z|z|4. (2.7)

Theorem 2.2 Sys.(2.1) exhibits Bautin bifurcation at b = b∗, α = α∗, around which
Sys.(2.1) is equivalent to the normal form (2.7).

The complete bifurcation diagram of Sys.(2.7) is shown in Fig. 1 from [4], where

H+ = {(β1, β2) : β1 = 0, β2 > 0}, H− = {(β1, β2) : β1 = 0, β2 < 0}
B+ = {(β1, β2) : β1 > 0, β2 = 0}, B− = {(β1, β2) : β1 < 0, β2 = 0},

T = (β1, β2) : β2
2 + 4β1 = 0, β2 > 0}.

For (β1, β2) small enough,
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Fig. 2 Bautin bifurcation—left: A stable limit cycle when (τ1, τ2) is the region between B+ and H+,
right: Two limit cycles when (τ1, τ2) is the region between T and H+
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Fig. 3 Bautin bifurcation—left: The graph of the ratio of
[ClO−

2 ]
[I−] for Fig. 2(left); right: the graph of the

ratio of
[ClO−

2 ]
[I−] for Fig. 2 (right)

(1) Between H+ and B+, there is a unique stable limit cycle bifurcating from (0,0),
(2) Between H+ and T , there are two limit cycles of opposite stability which disap-

pear and collide at the curve T .

Applying the above results and using the expressions of β1, β2, we obtain

H
+ = {(τ1, τ2) : τ2 = 0.297139στ1, τ1 > 0},

H
− = {(τ1, τ2) : τ2 = 0.297139στ1, τ1 < 0}

B
+ = {(τ1, τ2) : τ1 < 0, τ2 = 0.134646στ1},

B
− = {(τ1, τ2) : τ1 > 0, τ2 = 0.134646στ1}

T = {(τ1, τ2) : τ2 = 0.297139στ1 − 1.06672 × 10−7σ 2τ 2
1 + O(τ 3

1 ), τ1 > 0}

and the following theorem regarding the original Sys.(2.1).

Theorem 2.3 For sufficiently small τ1, τ2,
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(i) Between H
+

and B
+

, Sys.(2.1) has a unique stable limit cycle bifurcating from
(0,0).

(ii) Between H
+

and T , Sys.(2.1) has two limit cycles of opposite stability which
disappear and collide at the curve T .

3 Numerical simulations and conclusion

In this section, we give an example to verify (ii) of Theorem 2.3. Let σ = 8 and then
b∗ = 1.2181667445815956. Take τ1 = 0.0001, τ2 = 0.00024. Then b = b∗ + τ1 =
1.21827, α = α∗ + τ2 = 3.69926. It is easy to check that (τ1, τ2) is between T and
H

+
. By Theorem 2.1, there are two limit cycle generated by Bautin bifurcation. Figure

2 verifies this result.
Laboratory observations have shown the formation of oscillations for reactions of

CIMA as well as for CDIMA. It is also indicated that the oscillation depends on the

ratio of
[ClO−

2 ]
[I−] ([1,2,7,9,11]). In this work we have demonstrated the existence of two

limit cycles (Fig. 3). These two limit cycles indicate the formation of oscillations at
different range of the inhibitor to activator ratio. A narrow range inhibitor (Fig. 3(left))
to activator ratio leads to the development of less stable oscillatory phenomenon which
is associated with the smaller limit cycle. On the other hand, a wider range of inhibitor
(Fig. 3(right)) to activator ratio leads to more stable and sustainable oscillatory cycle.
This is consistent with the fact that the activator diffusion has to be slower than that
of the inhibitor in order for the system to display oscillation.
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